3.389 \(\int \frac {(a+b \tan (c+d x))^2 (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=276 \[ \frac {\left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \tan ^{-1}\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2} d}-\frac {\left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}+\frac {\left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}-\frac {2 a^2 A}{d \sqrt {\tan (c+d x)}}+\frac {2 b^2 B \sqrt {\tan (c+d x)}}{d} \]

[Out]

-1/2*(a^2*(A-B)-b^2*(A-B)-2*a*b*(A+B))*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)-1/2*(a^2*(A-B)-b^2*(A-B)-
2*a*b*(A+B))*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)-1/4*(2*a*b*(A-B)+a^2*(A+B)-b^2*(A+B))*ln(1-2^(1/2)*t
an(d*x+c)^(1/2)+tan(d*x+c))/d*2^(1/2)+1/4*(2*a*b*(A-B)+a^2*(A+B)-b^2*(A+B))*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(
d*x+c))/d*2^(1/2)-2*a^2*A/d/tan(d*x+c)^(1/2)+2*b^2*B*tan(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 276, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {3604, 3630, 3534, 1168, 1162, 617, 204, 1165, 628} \[ \frac {\left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \tan ^{-1}\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2} d}-\frac {\left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}+\frac {\left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}-\frac {2 a^2 A}{d \sqrt {\tan (c+d x)}}+\frac {2 b^2 B \sqrt {\tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Tan[c + d*x])^2*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2),x]

[Out]

((a^2*(A - B) - b^2*(A - B) - 2*a*b*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) - ((a^2*(A -
B) - b^2*(A - B) - 2*a*b*(A + B))*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) - ((2*a*b*(A - B) + a^2*
(A + B) - b^2*(A + B))*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) + ((2*a*b*(A - B) + a
^2*(A + B) - b^2*(A + B))*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) - (2*a^2*A)/(d*Sqr
t[Tan[c + d*x]]) + (2*b^2*B*Sqrt[Tan[c + d*x]])/d

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3604

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((B*c - A*d)*(b*c - a*d)^2*(c + d*Tan[e + f*x])^(n + 1))/(f*d^2*(n +
1)*(c^2 + d^2)), x] + Dist[1/(d*(c^2 + d^2)), Int[(c + d*Tan[e + f*x])^(n + 1)*Simp[B*(b*c - a*d)^2 + A*d*(a^2
*c - b^2*c + 2*a*b*d) + d*(B*(a^2*c - b^2*c + 2*a*b*d) + A*(2*a*b*c - a^2*d + b^2*d))*Tan[e + f*x] + b^2*B*(c^
2 + d^2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^
2, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1]

Rule 3630

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(C*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \tan (c+d x))^2 (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx &=-\frac {2 a^2 A}{d \sqrt {\tan (c+d x)}}+\int \frac {a (2 A b+a B)-\left (a^2 A-A b^2-2 a b B\right ) \tan (c+d x)+b^2 B \tan ^2(c+d x)}{\sqrt {\tan (c+d x)}} \, dx\\ &=-\frac {2 a^2 A}{d \sqrt {\tan (c+d x)}}+\frac {2 b^2 B \sqrt {\tan (c+d x)}}{d}+\int \frac {2 a A b+a^2 B-b^2 B-\left (a^2 A-A b^2-2 a b B\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx\\ &=-\frac {2 a^2 A}{d \sqrt {\tan (c+d x)}}+\frac {2 b^2 B \sqrt {\tan (c+d x)}}{d}+\frac {2 \operatorname {Subst}\left (\int \frac {2 a A b+a^2 B-b^2 B+\left (-a^2 A+A b^2+2 a b B\right ) x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}\\ &=-\frac {2 a^2 A}{d \sqrt {\tan (c+d x)}}+\frac {2 b^2 B \sqrt {\tan (c+d x)}}{d}-\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \operatorname {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}+\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \operatorname {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}\\ &=-\frac {2 a^2 A}{d \sqrt {\tan (c+d x)}}+\frac {2 b^2 B \sqrt {\tan (c+d x)}}{d}-\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 d}-\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} d}\\ &=-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {2 a^2 A}{d \sqrt {\tan (c+d x)}}+\frac {2 b^2 B \sqrt {\tan (c+d x)}}{d}-\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}\\ &=\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \tan ^{-1}\left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {2 a^2 A}{d \sqrt {\tan (c+d x)}}+\frac {2 b^2 B \sqrt {\tan (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.94, size = 211, normalized size = 0.76 \[ \frac {-8 \left (a^2 A-2 a b B-A b^2\right ) \, _2F_1\left (-\frac {1}{4},1;\frac {3}{4};-\tan ^2(c+d x)\right )-\sqrt {2} \left (a^2 B+2 a A b-b^2 B\right ) \sqrt {\tan (c+d x)} \left (2 \tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-2 \tan ^{-1}\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )+\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )-\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )\right )-8 b (3 a B+A b)+8 b B (a+b \tan (c+d x))}{4 d \sqrt {\tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Tan[c + d*x])^2*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2),x]

[Out]

(-8*b*(A*b + 3*a*B) - 8*(a^2*A - A*b^2 - 2*a*b*B)*Hypergeometric2F1[-1/4, 1, 3/4, -Tan[c + d*x]^2] - Sqrt[2]*(
2*a*A*b + a^2*B - b^2*B)*(2*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - 2*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]
+ Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])*Sqr
t[Tan[c + d*x]] + 8*b*B*(a + b*Tan[c + d*x]))/(4*d*Sqrt[Tan[c + d*x]])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^2*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \tan \left (d x + c\right ) + A\right )} {\left (b \tan \left (d x + c\right ) + a\right )}^{2}}{\tan \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^2*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(b*tan(d*x + c) + a)^2/tan(d*x + c)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 0.12, size = 692, normalized size = 2.51 \[ \frac {2 b^{2} B \left (\sqrt {\tan }\left (d x +c \right )\right )}{d}-\frac {2 a^{2} A}{d \sqrt {\tan \left (d x +c \right )}}+\frac {A \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) a b}{d}+\frac {A \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) a b}{d}+\frac {A \sqrt {2}\, \ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) a b}{2 d}+\frac {a^{2} B \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d}-\frac {B \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) b^{2}}{2 d}+\frac {a^{2} B \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d}-\frac {B \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) b^{2}}{2 d}+\frac {B \sqrt {2}\, \ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) a^{2}}{4 d}-\frac {B \sqrt {2}\, \ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) b^{2}}{4 d}-\frac {A \sqrt {2}\, \ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) a^{2}}{4 d}+\frac {A \sqrt {2}\, \ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) b^{2}}{4 d}-\frac {a^{2} A \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d}+\frac {A \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) b^{2}}{2 d}-\frac {a^{2} A \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d}+\frac {A \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) b^{2}}{2 d}+\frac {B \sqrt {2}\, \ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) a b}{2 d}+\frac {B \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) a b}{d}+\frac {B \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) a b}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(d*x+c))^2*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x)

[Out]

2*b^2*B*tan(d*x+c)^(1/2)/d-2*a^2*A/d/tan(d*x+c)^(1/2)+1/d*A*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*a*b+1/d
*A*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*a*b+1/2/d*A*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/
(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*a*b+1/2/d*a^2*B*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))-1/2/d*B*2^
(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*b^2+1/2/d*a^2*B*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))-1/2/d*B*2
^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*b^2+1/4/d*B*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2
^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*a^2-1/4/d*B*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)
*tan(d*x+c)^(1/2)+tan(d*x+c)))*b^2-1/4/d*A*2^(1/2)*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d
*x+c)^(1/2)+tan(d*x+c)))*a^2+1/4/d*A*2^(1/2)*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^
(1/2)+tan(d*x+c)))*b^2-1/2/d*a^2*A*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+1/2/d*A*2^(1/2)*arctan(1+2^(1/2)
*tan(d*x+c)^(1/2))*b^2-1/2/d*a^2*A*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))+1/2/d*A*2^(1/2)*arctan(-1+2^(1/
2)*tan(d*x+c)^(1/2))*b^2+1/2/d*B*2^(1/2)*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2
)+tan(d*x+c)))*a*b+1/d*B*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*a*b+1/d*B*2^(1/2)*arctan(-1+2^(1/2)*tan(d*
x+c)^(1/2))*a*b

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 240, normalized size = 0.87 \[ \frac {8 \, B b^{2} \sqrt {\tan \left (d x + c\right )} - 2 \, \sqrt {2} {\left ({\left (A - B\right )} a^{2} - 2 \, {\left (A + B\right )} a b - {\left (A - B\right )} b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - 2 \, \sqrt {2} {\left ({\left (A - B\right )} a^{2} - 2 \, {\left (A + B\right )} a b - {\left (A - B\right )} b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + \sqrt {2} {\left ({\left (A + B\right )} a^{2} + 2 \, {\left (A - B\right )} a b - {\left (A + B\right )} b^{2}\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) - \sqrt {2} {\left ({\left (A + B\right )} a^{2} + 2 \, {\left (A - B\right )} a b - {\left (A + B\right )} b^{2}\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) - \frac {8 \, A a^{2}}{\sqrt {\tan \left (d x + c\right )}}}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^2*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

1/4*(8*B*b^2*sqrt(tan(d*x + c)) - 2*sqrt(2)*((A - B)*a^2 - 2*(A + B)*a*b - (A - B)*b^2)*arctan(1/2*sqrt(2)*(sq
rt(2) + 2*sqrt(tan(d*x + c)))) - 2*sqrt(2)*((A - B)*a^2 - 2*(A + B)*a*b - (A - B)*b^2)*arctan(-1/2*sqrt(2)*(sq
rt(2) - 2*sqrt(tan(d*x + c)))) + sqrt(2)*((A + B)*a^2 + 2*(A - B)*a*b - (A + B)*b^2)*log(sqrt(2)*sqrt(tan(d*x
+ c)) + tan(d*x + c) + 1) - sqrt(2)*((A + B)*a^2 + 2*(A - B)*a*b - (A + B)*b^2)*log(-sqrt(2)*sqrt(tan(d*x + c)
) + tan(d*x + c) + 1) - 8*A*a^2/sqrt(tan(d*x + c)))/d

________________________________________________________________________________________

mupad [B]  time = 8.89, size = 3749, normalized size = 13.58 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*tan(c + d*x))*(a + b*tan(c + d*x))^2)/tan(c + d*x)^(3/2),x)

[Out]

2*atanh((32*A^2*a^4*d^3*tan(c + d*x)^(1/2)*((A^2*a^3*b)/d^2 - (A^2*a*b^3)/d^2 - (12*A^4*a^2*b^6*d^4 - A^4*b^8*
d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4))^(1/2))/(16*A^3*a^6*d^2 - 16*A^3*b^
6*d^2 + 112*A^3*a^2*b^4*d^2 - 112*A^3*a^4*b^2*d^2 + 32*A*a*b*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 -
 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)) + (32*A^2*b^4*d^3*tan(c + d*x)^(1/2)*((A^2*a^3*b)/d^2 - (A^2*
a*b^3)/d^2 - (12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/
(4*d^4))^(1/2))/(16*A^3*a^6*d^2 - 16*A^3*b^6*d^2 + 112*A^3*a^2*b^4*d^2 - 112*A^3*a^4*b^2*d^2 + 32*A*a*b*(12*A^
4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)) - (192*A^2*a^2*b^2
*d^3*tan(c + d*x)^(1/2)*((A^2*a^3*b)/d^2 - (A^2*a*b^3)/d^2 - (12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 -
 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4))^(1/2))/(16*A^3*a^6*d^2 - 16*A^3*b^6*d^2 + 112*A^3*a^2
*b^4*d^2 - 112*A^3*a^4*b^2*d^2 + 32*A*a*b*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4
 + 12*A^4*a^6*b^2*d^4)^(1/2)))*((A^2*a^3*b)/d^2 - (A^2*a*b^3)/d^2 - (12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^
8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4))^(1/2) - 2*atanh((32*B^2*a^4*tan(c + d*x)^(1/2)
*((12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) + (
B^2*a*b^3)/d^2 - (B^2*a^3*b)/d^2)^(1/2))/((16*B*b^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a
^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3 - (16*B*a^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B
^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3 - (192*B^3*a^3*b^3)/d + (32*B^3*a*b^5)/d + (32*B^3*a^5*b)/d) +
 (32*B^2*b^4*tan(c + d*x)^(1/2)*((12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4
*a^6*b^2*d^4)^(1/2)/(4*d^4) + (B^2*a*b^3)/d^2 - (B^2*a^3*b)/d^2)^(1/2))/((16*B*b^2*(12*B^4*a^2*b^6*d^4 - B^4*b
^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3 - (16*B*a^2*(12*B^4*a^2*b^6*d^4 - B
^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3 - (192*B^3*a^3*b^3)/d + (32*B^3
*a*b^5)/d + (32*B^3*a^5*b)/d) - (192*B^2*a^2*b^2*tan(c + d*x)^(1/2)*((12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a
^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) + (B^2*a*b^3)/d^2 - (B^2*a^3*b)/d^2)^(1/2))/((
16*B*b^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3
 - (16*B*a^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))
/d^3 - (192*B^3*a^3*b^3)/d + (32*B^3*a*b^5)/d + (32*B^3*a^5*b)/d))*((12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^
8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) + (B^2*a*b^3)/d^2 - (B^2*a^3*b)/d^2)^(1/2) - 2*
atanh((32*B^2*a^4*tan(c + d*x)^(1/2)*((B^2*a*b^3)/d^2 - (12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B
^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (B^2*a^3*b)/d^2)^(1/2))/((16*B*a^2*(12*B^4*a^2*b^6*d^4 -
B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3 - (192*B^3*a^3*b^3)/d - (16*B*
b^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3 + (3
2*B^3*a*b^5)/d + (32*B^3*a^5*b)/d) + (32*B^2*b^4*tan(c + d*x)^(1/2)*((B^2*a*b^3)/d^2 - (12*B^4*a^2*b^6*d^4 - B
^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (B^2*a^3*b)/d^2)^(1/2))/((
16*B*a^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3
 - (192*B^3*a^3*b^3)/d - (16*B*b^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B
^4*a^6*b^2*d^4)^(1/2))/d^3 + (32*B^3*a*b^5)/d + (32*B^3*a^5*b)/d) - (192*B^2*a^2*b^2*tan(c + d*x)^(1/2)*((B^2*
a*b^3)/d^2 - (12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/
(4*d^4) - (B^2*a^3*b)/d^2)^(1/2))/((16*B*a^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*
d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3 - (192*B^3*a^3*b^3)/d - (16*B*b^2*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4
*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3 + (32*B^3*a*b^5)/d + (32*B^3*a^5*b)/d))*((B^2*a
*b^3)/d^2 - (12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(
4*d^4) - (B^2*a^3*b)/d^2)^(1/2) - 2*atanh((32*A^2*a^4*d^3*tan(c + d*x)^(1/2)*((12*A^4*a^2*b^6*d^4 - A^4*b^8*d^
4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (A^2*a*b^3)/d^2 + (A^2*a^3*b)/d^2)^
(1/2))/(16*A^3*b^6*d^2 - 16*A^3*a^6*d^2 - 112*A^3*a^2*b^4*d^2 + 112*A^3*a^4*b^2*d^2 + 32*A*a*b*(12*A^4*a^2*b^6
*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)) + (32*A^2*b^4*d^3*tan(c + d
*x)^(1/2)*((12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4
*d^4) - (A^2*a*b^3)/d^2 + (A^2*a^3*b)/d^2)^(1/2))/(16*A^3*b^6*d^2 - 16*A^3*a^6*d^2 - 112*A^3*a^2*b^4*d^2 + 112
*A^3*a^4*b^2*d^2 + 32*A*a*b*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*
b^2*d^4)^(1/2)) - (192*A^2*a^2*b^2*d^3*tan(c + d*x)^(1/2)*((12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 3
8*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (A^2*a*b^3)/d^2 + (A^2*a^3*b)/d^2)^(1/2))/(16*A^3*b^6*
d^2 - 16*A^3*a^6*d^2 - 112*A^3*a^2*b^4*d^2 + 112*A^3*a^4*b^2*d^2 + 32*A*a*b*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4
- A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)))*((12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*
d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (A^2*a*b^3)/d^2 + (A^2*a^3*b)/d^2)^(1/2) - (2*A
*a^2)/(d*tan(c + d*x)^(1/2)) + (2*B*b^2*tan(c + d*x)^(1/2))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \left (a + b \tan {\left (c + d x \right )}\right )^{2}}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))**2*(A+B*tan(d*x+c))/tan(d*x+c)**(3/2),x)

[Out]

Integral((A + B*tan(c + d*x))*(a + b*tan(c + d*x))**2/tan(c + d*x)**(3/2), x)

________________________________________________________________________________________